SELAMAT DATANG DI BLOG SAYA

Rabu, 14 November 2018

sifat-sifat logaritma

Sifat-Sifat Logaritma
Misalkan a, b, dan g bilangan real positif, dengan g ≠ 1, maka berlaku sifat :
1. ^g\log(a.b) = ^g\log{a} + ^g\log{b}
Contoh :
^2\log(2.4) = ^2\log{2} + ^2\log{4}
^2\log(8) = ^2\log{2} + ^2\log{4}
3 = 1 + 2
2. ^g\log(\frac{a}{b}) = ^g\log{a} - ^g\log{b}
Contoh :
^2\log(\frac{8}{4}) = ^2\log{8} - ^2\log{4}
^2\log(2) = 3 - 2
1 = 1
3. ^g\log a^n = n \bullet ^g\log a
Contoh :
^2\log 4^2 = 2 \bullet ^2\log 4
^2\log 16 = 2 \bullet 2
4 = 4
4. ^g\log a = \frac{^p\log a}{^p\log g}
Contoh :
^2\log 4 = \frac{^p\log 4}{^p\log 2}
2 = \frac{^p\log 4}{^p\log 2}
Misal kita ambil p = 4
2 = \frac{^4\log 4}{^4\log 2}
2 = \frac{1}{\frac{1}{2}}
2 = 2
Misal kita ambil p = 2
2 = \frac{^2\log 4}{^2\log 2}
2 = \frac{2}{1}
2 = 2
5. ^g\log a = \frac{1}{^a\log g}
Contoh :
^2\log 4 = \frac{1}{^4\log 2}
2 = \frac{1}{\frac{1}{2}}
2 = 2
6. ^g\log a \times ^a\log b = ^g\log b
Contoh :
^2\log 4 \times ^4\log 16 = ^2\log 16
2 \times 2 = 4
4 = 4
7. ^g^{n}\log a^m = \frac{m}{n} ^g\log a
Contoh :
^2^{2}\log 4^4 = \frac{4}{2} ^2\log 4
4\log 256 = 2 \times 2
4 = 4
8. g^{^g\log a} = a
Contoh :
2^{^2\log 4} = 4
2^2 = 4
4 = 4
Share:

0 komentar:

Posting Komentar

hari ini pukul

Informasi

TETAP SEMANGAT UNTUK HARI ESOK

jadwal sholat


jadwal-sholat

Cari Blog Ini

Diberdayakan oleh Blogger.

Arsip Blog

Blogger templates